
  

Abstract—We proposed using Conditional Random Fields with 

adaptive data reduction for the classification of 3D point clouds 

acquired from a Riegl Terrestrial laser scanner. The training and 

inference of the acquired large outdoor urban data can be time 

consuming. We approach the problem by computing an adaptive 

support region for each data point using 3D scale theory. For 

training and inference of the discriminative Conditional Random 

Fields, smaller set of data samples that contains relevant 

information within the support region is selected instead of using 

all point cloud data. We tested the algorithm on synthetically 

generated data and urban point clouds data acquired from the 

laser scanner. The computed support region is also used in 

feature extraction for urban point clouds data. The results 

showed improvement in the training and inference rate while 

maintaining comparable classification accuracy. 

 
Index Terms— Classifications, Conditional Random Fields, 

LIDAR data, machine learning, scale theory 

 

I. INTRODUCTION 

odelling of urban environment is an important research 

area, with extensive applications that include regional 

planning, virtual reality, precise navigation and disaster 

management. However, the amount of acquired data is usually 

large and therefore it is memory expensive and require a long 

time to process the data.  

In order to reduce the size of data storage, geometric fitting 

of the point clouds is recommended. As the point clouds have 

the following properties: occlusions, varying density, multiple 

objects and cluttered vegetations - direct geometric model 

fitting is difficult and challenging. A useful first step will be to 

classify the raw data points into planar data groups that can be 

fitted with simple geometry such as a plane. With 

classification, we will then process different the data types 

with most appropriate methods. 

Many of the previous attempts at urban modelling uses 

aerial LIDAR data where the acquired data consists of 2D (or 

2.5D) bird-eye view point clouds. Methods applied in aerial 

urban modelling to classify the data are inappropriate for data 

classification in terrestrial urban modelling. For example, 

vegetation removal is preformed by filtering via changes in the 

height differences; however rooftop information is generally 

unavailable in terrestrial data acquisition. With a Riegl LMS-

Z420i terrestrial laser scanner, we need a classification 

technique that deals with 3D data. In this paper, we performed 

classifications of terrestrial urban data into object classes  

using CRF [1]. 

CRF has been extensively studied for sequential and image 

segmentation, classification and recognition. For large scale 

3D point clouds with extensive training data, a discriminative 

CRF model is more appropriate than the traditional generative 

model. However, large training data often requires long period 

of training process. The need to infer a large amount of data 

takes a long time as well. 

Recognizing this problem, we developed a method that is 

capable of adaptively reducing the number of classification 

data. The training and inference of the CRF is based on a 

reduced data set of the original point clouds. The concept is 

such that geometrically similar features data is omitted from 

training and inference. With the method, the total processing 

time required for training and testing can be reduced. The 

proposed algorithm combines the extraction of distinct features 

from the point clouds, a discriminative graphical probabilistic 

model – CRF and 3D scale theory for classification.  

We validated our method with synthetically generated data 

and urban data acquired from a terrestrial Riegl laser scanner. 

The results show that the training and inference time is greatly 

reduced while maintaining comparable classification accuracy. 

  

II. BACKGROUND 

For 3D point cloud classification, distinct features that 

capture the relevant relationships among observations are 

extracted in the first step. In previous works, popular features 

include intensity [2], height [2-5], surface curvature [5], spin 

image [3], normals [4], Eigenvalues corresponding to the 

covariance matrix of k neighbouring data [6] and colour [7]; 

and these are often combined together or treated 

independently. 

With the extracted features, instead of using a manually 

fixed threshold [6, 8], supervised-learning models can be 

trained to recognize which data type the point clouds belonged 

to. Generative models or discriminative models have been 

studied for the supervised learning problem. With a generative 

model, Lalonde et al [9] learned the distribution of the 

extracted features by fitting a Gaussian Mixture Model using 

the Expectation Maximization algorithm. Other popular 

generative models include: Bayes classifier, Hidden Markov 

Models and Maximum Entropy Markov Models which define 

a joint probability distribution of the observation and labeling 

sequences p(X,Y).  

Discriminative models such as logistic regression, 

Conditional Random Fields[1] and Markov Random Fields, 

specify the probability of a label given an observation 
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sequence p(Y|X). These models have also been employed in 

supervised image or object classifications problem. Using both 

generative and discriminative models, Wolf et al. [10] 

classified 3D points into navigable and non-navigable regions 

locally with Hidden Markov Models during data acquisition, 

followed by global segmentation with Markov Random Fields 

to refine the model afterwards. 

Conditional Random Fields [1] are undirected graphical 

models with which have shown promising results in text 

processing [1, 11], image segmentation [12, 13], DNA 

sequence prediction [14] and table or diagram structure 

extraction from documents [15, 16]. Most applications of 

CRFs in these cases deal with sequential data or two 

dimensional images, which are different from 3D point clouds 

that have irregular grids. The first use of the discriminative 

graphical model in 3D data that consists of multiple objects is 

in the Associative Markov Network [3]. In [3] , a fixed number 

of neighboring points is randomly picked in the experiment: 

three points are taken randomly in a fixed radius sphere and 

another three randomly in a fixed radius cylinder to provide 

vertical restriction.  

For fast training and inference in CRFs, recent advances 

include applying Stochastic Meta-Descent (SMD) which is a 

stochastic gradient method with gain vector adaptation for 

accelerated parameter estimation [17]. Cohn [18] reported 

efficient inference in large CRF data which reduce the time 

complexity quadratic in the number of labels and number of 

cliques.  

Our approach is similar to data reductions using kd-tree 

pruning in [19]. Instead of reducing data according to position, 

our approach identifies and removes redundant data points 

based on the geometric structure properties such as planarity. 

III. MODEL 

A. Conditional Random Field 

We model 3D point clouds with a CRF [20] such that:  

Let x=x1, …,xN be the observed feature vectors of some N 

points. Each feature vectors can consist of a combination of 

feature descriptors such as heights, colors, SPIN image and 

estimated normals.  

Let y=y1,…,yN  be the labels in L given the observable point 

clouds. In urban modeling, labels can be low level such as: 

‘planar’ and ‘cluttered’; or higher level such as: ‘building’, 

‘vegetation’, ‘tree trunk’, ‘grass’ and ‘man-made pathway’.  

The CRF with parameters },{ iji λλθ = , defines the 

conditional probability for a label given an input observation 

to be: 
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Z is the partition functions which normalized the probability. C 

is the set of cliques which includes the node and its connecting 

neighbors. The selection of the neighbors or edges is discussed 

in the following section. 

The node potential 
iΨ is given by: 
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The edge potential 
ijΨ is given by: 
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Where 

   
 

A CRF learns by finding the node 

weights },...,{ 1 L

iii λλλ = and edge weights },...,{ 1 L
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to maximize the log-likelihood. With a Gaussian prior of 

variance
2

Lσ , the log-likelihood is penalized as follows: 
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where the second summation provides smoothing to avoid 

over-fitting [21]. The scaled conjugate gradient optimization 

algorithm is used for the maximization.  

Given the observation x, inference in CRF is to find a label 

ymax which is the most likely 

)|(maxargmax xypy y θ=             (5) 

Since exact inference can be intractable in such models, 

approximate inference using belief propagation is performed 

for finding ymax.  

  

B. Adaptive Data Reduction 

For data reduction, a support region is estimated for every 

node using 3D scale theory [9, 22]. The size of the support 

region r is determined adaptively which depends on the 

curvature, density and standard deviation of noise of the data. 

The scalable support region is obtained via iterative 

procedure explained as follows [22]: With an initial k number 

of neighboring points (for example, ko = 15) for point p, the 

radius r is computed as the distance from p to the further of the 

kth-nearest neighbors. 

With the estimated radius of support region, the density ρ 

and curvature κ of p is computed: 
                       (6) 

                       (7)  

 

d is the shortest distance between the point and the least square 

fitted plane. 

A new support region radius is next computed with the 

known estimation of curvature and density:  

                       (8) 

 

The total number of nearest neighbor within the support 

region is then computed: 

                       (9) 

 

The process is repeated until k saturates.  

σ is the estimated standard deviation of noise which can be 

obtained experimentally. ε  is a small positive number which 
is set to be 0.01. d1 and d2 are small constants that depend on 

3

1

2

21 ))(
1
( n

n ddr σ
ερ
σ

κ
+=

[ ]2

newrk πρ←

2/ rk πρ ←
2/2 µκ d←

405



  

the sampling distribution of the point clouds. To estimate the 

value of d1 and d2, the following linear system is solved using 

SVD: 

 

 

 

 

 

                       (10) 

 

Refer to [9] for more details. In our experiment, d1=1 and d2=4 

yield good results. 

After the above procedure, for every node, there exists p = 

p1,…pk points within support region r.  The p data points 

within the support region are highly likely to be labeled as the 

same data class due to the similarity in geometric properties 

and locations. Therefore instead of using all points in 

estimating the CRF parameters, a smaller sample of data is 

selected from p. 

The above selection algorithm is explained as follows: A 

point is randomly picked from the point clouds data and its 

adaptive support region size and number of nearest neighbours 

is computed. Within the region, c data points are selected 

randomly as the neighbors that are connected to the node in the 

CRF. All points within the support region, regardless of being 

picked as the neighbors of the node or not, are marked as 

processed. The process is repeated by picking another point 

that does not belong to any computed nearest neighbor, until 

all points have been processed. This is similar to a segmented 

group of pixels in a segmented image. 

In inference, c points are randomly chosen from p using the 

same algorithm in training point selection. All data points in p 

will then carry the label of the majority of the connecting 

neighbors in the CRF.  

Therefore, in our CRF, instead of x=x1, …,xN, the observed 

feature vectors will be reduced to x’=x1, …,xN’, N’<N, where 

N’ points are chosen from N. Similarly, the labels vector 

y=y1,…,yN  is therefore reduced to y’=y1,…,yN’. 

 

C. Feature Descriptors 

Each feature vector consists of a combination of feature 

descriptors, which are computed from the geometry of data 

points within the support region.  

The three largest eigenvalues of the covariance matrix of the 

coordinates of  p = p1,…pk points are computed to form the 

saliency features [9, 23]. With the relationship between the 

eigenvalues, these features capture the spatial distribution of 

points in a local region: 
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Let λ1>λ2>λ3 be the eigenvalues of the covariance matrix of 

the k nearest neighbours. In case of clutter, λ1≈λ2≈λ3 and there 

is no dominant direction. For points on surfaces λ1,λ2>>λ3 and 

for linear structures λ1>>λ2,λ3. 

Another feature descriptor depends on the normals vector, 

estimated as the eigenvector with the largest eigenvalue in 

previous computation of saliency features. The angle between 

the normal vector and the vertical vector is used instead of the 

normals. This is because the angle is more useful in 

differentiating terrain and building data, based on the 

assumption that terrain are mostly flat and walls are mostly 

vertical. 

])010[arccos( •= nθ        (12) 

 

IV. EXPERIMENT 

We validated our algorithm with the following synthetic and 

real-world data: 

A. Synthetic data sets 

We synthetically generated two clusters of data to evaluate 

the performance of the proposed algorithm. It consists of two 

sets (for training and inference purpose) of a hundred points 

that form a plane with Gaussian noise of σ=0.1; and a hundred 

point clutter data that represent vegetations. We compare our 

algorithm with CRF without data reduction, where the 

connecting neighbors are selected from a fixed support region. 

We also compare the algorithm with a discriminative classifier 

that does not take edges potential into account – logistic 

regression. Comparison between discriminative and generative 

classifier for urban data can be found in [23]. 

 

1) CRF with adaptive data reduction 

Six points are randomly selected from the adaptive support 

region as the edges in CRF. The saliency features are used as 

the feature vector. From Table I, we can see that the training 

data is reduced to 42 and it required 12.46s for parameter 

estimation.  

 
Fig. 1.  Classification result of synthetic data learned and inferred with 

(a) CRF with adaptive data reduction 

(b) CRF without adaptive data reduction 

(c) Logistic regression 

 

 
Fig. 3   Original point clouds acquired from laser scanner for testing with 

color mapped from calibrated camera images (ground truth) 
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For inference, the testing data is reduced to 52. Most of the 

data reduction occurs within the plane regions where the 

curvature is lower and therefore support region is larger (the 

support region is inversely proportional to the curvature). As it 

is possible for the support regions to overlap, the final label 

will be chosen from the majority of the possible label for each 

point. All points are correctly classified – blue color as plane 

data’s label and red color as cluttered data’s label.  

 

2) CRF without adaptive data reduction 

For selection of edge points, three points are randomly 

picked from a fixed radius and another three points randomly 

picked from a fixed cylinder [3]. As shown in Table I, the time 

taken to train the CRF with all data is much longer.  

For inference, the recognition accuracy is 93.9%. The reason 

for a few misclassifications shown might be due to the 

different data selections method. In the proposed algorithm, 

the selected neighbors are from an adaptive radius; therefore 

they are highly likely to be from the same class. 

 

3) Logistic regression  

∏
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This is similar to a CRF but only takes node potentials into 

account. The time taken for training and testing matches the 

CRF with adaptive data reduction. However, without spatial 

information, it is easy to misclassify cluttered region as planar. 

Therefore the recognition accuracy is only 83.5%. For 

example, in the computation of saliency features of a cluttered 

point, it is possible that the k nearest points selected to form 

the covariance matrix are approximately coplanar.  

 

B. Urban data sets 

With the Riegl terrestrial laser scanner data as shown in 

Fig.2, training samples can be obtained by projecting labeled 

2D images onto 3D point clouds with information of the 

camera and scanner calibration matrix. This can be done using 

RiScan Pro, the software accompanied with the Riegl 

terrestrial laser scanner. The operating range of the scanner is  

800m with accuracy of 10mm. The field of view is 80º x 360º 

and the scanner can be tilted up to 180º. 

We performed learning and classification of the data using 

the proposed algorithm. To estimate the standard deviation of 

noise in the real-world data, we manually segmented a few 

clean walls data with different distances from the scanner. We 

then performed least square plane fitting onto each wall and 

observed the standard deviation of the noise for each wall. The 

noise magnitude is different for walls at different distance and 

the average is estimated to be σ=0.0072.  

As a result of data reduction, 57,734 data points for training 

of the CRF is reduced to 5850 data points. The training data 

consists of points with almost equal ratio from each class. The 

feature descriptors consist of the saliency features and the 

angle between the normal vector and the vertical vector. The 

time taken for CRF training with four classes is reduced from 

more than twelve hours to five hours.  

For inference, 61,135 point cloud data as shown in Fig.3 is 

reduced to 5941 via the adaptive data reduction. The point 

cloud data for testing purpose in Fig.3 is shown with the color 

mapped from the calibrated camera images. It only required 

37.672s for the inference and has classification accuracy of 

0.996, as shown in Fig. 4. Most of the misclassifications occur 

at the trees region, where thin branches that are occluded are 

recognized as part of the vegetations.  

 
Fig. 2.  Riegl LMS-Z420i Terrestrial Laser Scanner equipped with a 

calibrated Nikon D100 6 Mega Pixel digital camera 

  

 
Fig. 4.  Classified point clouds – Red represents ‘terrain’; black represents 

‘buildings’; green represents ‘vegetations’ and blue represents ‘tree branches’ 

 

 

Fig. 5.  Classified point clouds – Red represents ‘terrain’; black 

represents ‘buildings’; green represents ‘vegetations’ and blue represents 

‘tree branches’ 
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In Fig.5, 424,726 point cloud data is reduced to 24,621 for 

inference. The misclassifications occurred at the sparse terrain 

region and are mainly due to the estimation of normals in 

feature extractions. The slope of the terrain causes the 

estimated normals of the sparse and incomplete coverage 

region to be inaccurate. Also, some parts of the dense 

cylindrical-like vegetation data are labeled as ‘trunk’.  

In the future, we plan to run the algorithm on data combined 

from more scan locations so that it will fill out most of the 

occlusions. We also we plan to try it on a larger number of 

object classes and on larger data scale. We are also interested 

in including more feature descriptors such as normalised 

colours and laser returned intensity to assist in differentiating 

trunk and vegetation data. 

V. CONCLUSION 

In this paper, we showed that the training and inference time 

for the CRF can be reduced with smaller samples of data, 

while still maintaining comparable classification accuracy. 

Repeating similar values is not as important for a 

discriminative graphical model, unlike with a generative model 

where the priors requires multiple samples to estimate the 

probability distribution functions. Therefore data reduction is 

possible for CRF due to the property which is discriminative. 

It is important to ensure the CRF is trained with a variety of 

possible values.  
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TABLE I 

RESULTS FOR SYNTHETIC DATA EXAMPLE 

 Accuracy 

(0-1) 

Runtime 

(Training) 

Runtime 

(Testing) 

Training 

iterations 

Reduction to 

(Train data 200) 

Reduction to 

(Test data 200) 

CRF with adaptive point 

reduction 

1 12.46s 0.109s 23 42 52 

CRF without adaptive data 

reduction 

0.939 77.96s 0.516s 37 N/A N/A 

Logistic Regression 0.835 11.344 0.156s 18 N/A N/A 
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